Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp.

نویسندگان

  • Thomas Krueger
  • Susanne Becker
  • Stefanie Pontasch
  • Sophie Dove
  • Ove Hoegh-Guldberg
  • William Leggat
  • Paul L Fisher
  • Simon K Davy
چکیده

Warmer than average summer sea surface temperature is one of the main drivers for coral bleaching, which describes the loss of endosymbiotic dinoflagellates (genus: Symbiodinium) in reef-building corals. Past research has established that oxidative stress in the symbiont plays an important part in the bleaching cascade. Corals hosting different genotypes of Symbiodinium may have varying thermal bleaching thresholds, but changes in the symbiont's antioxidant system that may accompany these differences have received less attention. This study shows that constitutive activity and up-regulation of different parts of the antioxidant network under thermal stress differs between four Symbiodinium types in culture and that thermal susceptibility can be linked to glutathione redox homeostasis. In Symbiodinium B1, C1 and E, declining maximum quantum yield of PSII (Fv /Fm ) and death at 33°C were generally associated with elevated superoxide dismutase (SOD) activity and a more oxidized glutathione pool. Symbiodinium F1 exhibited no decline in Fv /Fm or growth, but showed proportionally larger increases in ascorbate peroxidase (APX) activity and glutathione content (GSx), while maintaining GSx in a reduced state. Depressed growth in Symbiodinium B1 at a sublethal temperature of 29°C was associated with transiently increased APX activity and glutathione pool size, and an overall increase in glutathione reductase (GR) activity. The collapse of GR activity at 33°C, together with increased SOD, APX and glutathione S-transferase activity, contributed to a strong oxidation of the glutathione pool with subsequent death. Integrating responses of multiple components of the antioxidant network highlights the importance of antioxidant plasticity in explaining type-specific temperature responses in Symbiodinium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship between antioxidant traits of Symbiodinium sp. symbiotic dinoflagellate extract under physicochemical factors during different seasons in Persian Gulf and Gulf of Oman

Coral bleaching, loss of symbiotic algae of Symbiodinium sp. or photosynthetic microalgae pigments from their coral host have become commonplace in recent decades due to the rising of sea temperatures and changes in physicochemical factors. It is essential to study the susceptibility of corals to bleaching, the physiology of its symbiotic algae, and its capacity to cope with abiotic stress. Oxi...

متن کامل

Specific growth rate and mitotic index in dinoflagellate Symbiodinium sp. isolateed from sea anemone Stichodactyla haddoni

The cultivation techniques of dinoflagellates is often problematic due to their sensitivity to hydrodynamic (shear) stress. For this study, sea anemone was collected from the east coast of Hormuz Island. First, we extracted symbiotic dinoflagellate, Symbiodinium sp. from Stichodactylla haddoni using manually homogenization. After transferring to the laboratory, samples were cultured in differen...

متن کامل

Genetically divergent Symbiodinium sp. display distinct molecular responses to pathogenic Vibrio and thermal stress.

Global climate change and anthropogenic activities are threatening the future survival of coral reef ecosystems. The ability of reef-building zooxanthellate coral to survive these stressors may be determined through fundamental differences within their symbiotic dinoflagellates (Symbiodinium sp.). We define the in vitro apoptotic response of 2 evolutionarily distant Symbiodinium sp., subtypes B...

متن کامل

Transcriptional Response of Two Core Photosystem Genes in Symbiodinium spp. Exposed to Thermal Stress

Mutualistic symbioses between scleractinian corals and endosymbiotic dinoflagellates (Symbiodinium spp.) are the foundation of coral reef ecosystems. For many coral-algal symbioses, prolonged episodes of thermal stress damage the symbiont's photosynthetic capability, resulting in its expulsion from the host. Despite the link between photosynthetic competency and symbiont expulsion, little is kn...

متن کامل

Heat Induction of Cyclic Electron Flow around Photosystem I in the Symbiotic Dinoflagellate Symbiodinium.

Increases in seawater temperature impair photosynthesis (photoinhibition) in the symbiotic dinoflagellate Symbiodinium within cnidarian hosts, such as corals and sea anemones, and may destroy their symbiotic relationship. Although the degree of photoinhibition in Symbiodinium under heat stress differs among strains, the differences in their responses to increased temperatures, including cyclic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of phycology

دوره 50 6  شماره 

صفحات  -

تاریخ انتشار 2014